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1 Background

Consider an elliptic curve over the finite field Fq given by the equation

y2 = x3 +A · x+B.

Eagen ([3, Section 3]) provides an interactive prove that given rational points P1, P2, . . . , PN of
the elliptic curve sum to zero.

P1 + P2 + · · ·+ PN = O.

The idea is to provide as witness a rational function D(x, y) on the elliptic curve (regular outside
∞), which vanishes precisely at these points. An argument for the vanishing of the function at
the points is obtained by taking a random line ℓ, projecting the points onto ℓ, and showing that
the pushforward (norm) of D(x, y) vanishes at the projected points. More precisely, a line given
by y − λ · x = 0 defines a map (x, y) 7→ y − λ · x =: z and hence gives a subfield Fq(z) of the
function field E = Fq(x, y) of the elliptic curve. The task is reduced to showing that

NE/Fq(z)(D(x, y))

vanishes precisely at the points z(P1), z(P2), . . . , z(PN ). Here NE/Fq(z)(·) denotes the field norm
from E to Fq(z) (e.g. see [7, Chapter VI, Section 5]). So we have to provide a proof for

NE/Fq(z)(D(x, y)) =
N∏
i=1

(z − z(Pi)).

Note that both sides are functions of z, the coordinate on the line. This is done by evaluating
both sides of above equations at a random point z = µ on the line, by the use of the Schwartz-
Zippel Lemma ([8, 11]). A soundness proof for this fact was given in [1]. Rather than first
obtaining the norm of D(x, y) and evaluating it at µ, by the relation between pushforward and
pullback of functions and divisors, one can evaluate D(x, y) at the pullback of the divisor (z = µ)
on E (at the points on E mapping to the point z = µ). There is another small modification
concerning the choice of the random line y = λ ·x and the random evaluation point µ. As D(x, y)
is evaluated at the points on E mapping to a random point µ on a random line ℓ, rather than
choosing the line ℓ and the point µ, we can randomly choose three collinear points A0, A1, A2 on
E and use the line they define for the projection. As three collinear points on E add up to ∞,
the choice of A0 and A1 uniquely determine A2. The choice of A0, A1 gives a slightly different
probability distribution than a choice λ (defining ℓ) and a consecutive choice of µ, but a similar
soundness argument applies. For further details see [1].

1



2 DERIVATIONS AND THE LOGARITHMIC DERIVATIVE

As a further simplification, Eagen [3] utilizes logarithmic derivatives, the use of which will be
detailed and formalized in this note.

2 Derivations and the Logarithmic Derivative

For further details on derivations and their relation to differentials, see [10, Chapter 4]. For their
cryptographic use see [4, 6]. Let F be a function field over K (assume K is perfect and it is the
full constant field of F ). A derivation of F/K into F is a K-linear map δ : F → F satisfying the
Leibniz rule for products

δ(f · g) = f · δ(g) + δ(f) · g
for all f, g ∈ F .

If z ∈ F is a separating element of F/K (i.e. F/K(z) is finite and separable), then any
derivation δ : F → F of F/K is uniquely determined by δ(z) ([10, Proposition 4.1.4]). Moreover,
there exists a derivation δ : F → F of F/K with δ(z) = 1. This derivation is unique by above
and it is called the derivation with respect to z. It is denoted by δz. On K(z) it corresponds to
the formal derivative with respect to z.

For a derivation η : F → F we have

η = η(z) · δz.

This can be easily seen by the uniqueness result above and the fact that both sides agree on the
separating element z. In particular, for another separating element y of F/K we have

δy = δy(z) · δz,

which corresponds to the chain rule.
It can be shown that for a separating element z ∈ F and for t ∈ F we have

δz(t) ̸= 0 ⇔ t is a separating element.

In particular δz(t) = 0 if and only if t ∈ K or t = up for some u ∈ F , where p is the characteristic.
Note that this agrees with our intuition that constants should have zero derivatives and for t = up

we have t′ = p · up−1 · u′ = 0 in characteristic p. Here primes indicate derivatives.
Given a function field F/K and a derivation δ : F → F of F/K, we can define the map

L : F× → F by

f 7→ δ(f)

f
.

This map is called the logarithmic derivative, as in the classical case it corresponds to taking the
derivative of the function log(f). Using the Leibniz rule, we have

L(f · g) = δ(f · g)
f · g

=
f · δ(g) + δ(f) · g

f · g
=

δ(f)

f
+

δ(g)

g
= L(f) + L(g).

Hence L is a homomorphism from the multiplicative group F× to the additive group F . By the
characterization of elements t ∈ F satisyfing δ(t) = 0, the kernel of L is given by

ker(L) = {t ∈ F×|t ∈ K or t = up for some u ∈ F}.

For t ∈ F\K we can define degF (t) = [F : K(t)] = deg(t)∞ = deg(t)0, where (t)∞ and (t)0
denote the pole divisor and the zero divisor of t in F , respectively. Note that for F = K(x), the
rational function field, we recover the usual definition

degK(x)

(a(x)
b(x)

)
= max{deg a(x),deg b(x)}
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4 FORMULAS FOR THE LOGARITHMIC DERIVATIVE OF THE NORM

for a(x) and b(x) relatively prime. Here deg on the right hand side denotes the usual degree as
a polynomial. Raising an element to a power n multiplies its degree by n, hence if t = up, then
degF (t) = degF (u

p) = p · degF (u). Hence for large p we obtain an easy way of checking t ̸= up

for any u ∈ F :

Lemma 1. Suppose t ∈ ker(L) and degF t < p. Then t ∈ K, i.e. the only elements in the kernel
of the logarithmic differential of low degree are constants. In particular for nonzero f, g of degree
< p we have L(f) = L(g) if and only if f = c · g for some constant c ∈ K.

3 Verifying the Divisor Witness

Our aim is to establish

NE/Fq(z)(D(x, y)) =

N∏
i=1

(z − z(Pi)). (1)

We assume both sides have degree smaller than the characteristic p. Hence showing that their
logarithmic derivatives agree and one of the coefficients is equal suffices to conclude equality.
Alternatively, without comparing coefficients we can conclude that they differ by a multiplicative
constant. Hence assume degD,N ≪ p. This will ensure that both the norm of D and the term
on the right have small degree. By Lemma 1, if their logarithmic derivatives agree, we can
conclude that they differ by a multiplicative constant.

Now the logarithmic derivative (with respect to z) of the term on the right can be easily
computed by the Leibniz rule:

δz
(∏N

i=1(z − z(Pi))
)∏N

i=1(z − z(Pi))
=

N∑
i=1

1

z − z(Pi)
.

Evaluating this at the point z = µ gives

N∑
i=1

1

µ− z(Pi)
. (2)

The logarithmic derivative of the norm is a bit more involved. It can in fact be expressed in
terms of the values of D(x, y) at the points A0, A1, A2 in the support of the pullback of the
divisor (z = µ). The computation is done in the next section.

4 Formulas for the Logarithmic Derivative of the Norm

Let E = Fq(x, y) be the function field of the elliptic curve given by the equation

y2 = x3 +A · x+B, (3)

with A,B ∈ Fq. Assume D(x, y) ∈ E has only poles at ∞. Using Equation (3) we can write
D(x, y) in the form D(x, y) = a(x)− y · b(x) for a(x), b(x) ∈ Fq[x].

Let λ ∈ Fq and let
z = y − λ · x. (4)

Consider the subfield Fq(z) ⊆ E. We have [E : Fq(z)] = 3. Let Ẽ be the Galois closure of
E/Fq(z). Solving Equation (4) for y and substituting into Equation (3), we obtain

x3 − λ2 · x2 + (2λz +A) · x+ (B − z2) = 0.
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4 FORMULAS FOR THE LOGARITHMIC DERIVATIVE OF THE NORM

So E can be obtained from Fq(z) by adjoining a root of the polynomial

T 3 − λ2 · T 2 + (2λz +A) · T + (B − z2).

Let the roots of this polynomial be given by x0, x1, x2 and let yi = z − λ · xi for i = 0, 1, 2.
Consider the subfields Ei = Fq(xi, yi) for i = 0, 1, 2. We obtain the following diagram of fields:

Ẽ

E0 E1 E2

Fq(z)

Note that all extension Ei/Fq(z), Ẽ/Ei and Ẽ/Fq(z) are separable. In particular z is a separating

element of Ẽ/Fq

Consider the derivation δz of Ẽ with respect to z, i.e., the unique derivation δz : Ẽ → Ẽ with
δz(z) = 1. Note that its restriction to Fq(z) corresponds to the formal derivative of the rational
function field.

We want to find an expression for the logarithmic derivative of the norm, i.e. L
(
NE/Fq(z)(D(x, y))

)
.

For this we first compute the derivation δz(·).
We have

NE/Fq(z)(D(x, y)) = D(x0, y0) ·D(x1, y1) ·D(x2, y2). (5)

We can find the derivation of each of the factors:

δz
(
D(xi, yi)

)
= δz

(
a(xi)− yi · b(xi)

)
= a′(xi)δz(xi)− δz(yi)b(xi)− yib

′(xi)δz(xi).

Note that a′ and b′ denote the usual derivatives of the polynomials a and b. As y2i = x3
i+A·xi+B,

by applying δxi and using the chain rule we obtain 2yiδxi(yi) = 3x2
i + A, i.e. δxi(yi) = (3x2

i +
A)/(2yi) and hence

δz(yi) =
3x2

i +A

2yi
δz(xi). (6)

Substituting this above we get

δz
(
D(xi, yi)

)
=

(
a′(xi)−

3x2
i +A

2yi
b(xi)− yib

′(xi)
)

︸ ︷︷ ︸
dD(xi,yi)

dxi

δz(xi).

Hence using Equation (5) we get for the derivation of the norm

δz
(
NE/Fq(z)(D(x, y))

)
= δz

(
D(x0, y0)

)
·D(x1, y1) ·D(x2, y2)

+D(x0, y0) · δz
(
D(x1, y1)

)
·D(x2, y2)

+D(x0, y0) ·D(x1, y1) · δz
(
D(x2, y2)

)
.
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6 AN IMPLICIT ASSUMPTION AND A POTENTIAL VULNERABILITY

Hence we get for the logarithmic derivative

L
(
NE/Fq(z)(D(x, y))

)
=

δz
(
NE/Fq(z)(D(x, y))

)
NE/Fq(z)(D(x, y))

=

2∑
i=0

dD(xi,yi)
dxi

D(xi, yi)
· δz(xi)

=

2∑
i=0

(
a′(xi)− 3x2

i+A
2yi

b(xi)− yib
′(xi)

)
D(xi, yi)

· δz(xi)

To find an expression for δz(xi), we use Equations (4) and (6). Applying δz(·) to both sides we
obtain

1 = δz(yi)− λ · δz(xi) =

(
3x2

i +A

2yi
− λ

)
· δz(xi)

and hence

δz(xi) =
2yi

3x2
i +A− λ · 2yi

.

We obtain

L
(
NE/Fq(z)(D(x, y))

)
=

2∑
i=0

(
a′(xi)− 3x2

i+A
2yi

b(xi)− yib
′(xi)

)
D(xi, yi)

· 2yi
3x2

i +A− λ · 2yi
.

Finally we want to evaluate this expression at the point z = λ. We can do this by evaluating
above expression at (xi, yi) = Ai. More precisely, let Q be a place of Ẽ lying above P = (z = µ).
Then we have xi(Q) = x(Ai), yi(Q) = y(Ai) and z(Q) = z(P ) = µ. Hence

L
(
NE/Fq(z)(D(x, y))

)
(P )

=

2∑
i=0

(
a′(x(Ai))− 3x(Ai)

2+A
2y(Ai)

b(x(Ai))− y(Ai)b
′(x(Ai))

)
D(x(Ai), y(Ai))

· 2y(Ai)

3x(Ai)2 +A− λ · 2y(Ai)
.

5 Conclusion

We have recovered the expression for the logarithmic derivative of the norm and its evaluation
in terms of points on the pullback as given by [3]. As mentioned in the Background Section
above, the slightly different probability distribution in the choice of randomness causes some
additional difficulties for the soundness argument. However the soundness proof given in [1] for
the interactive protocol verifying Equation (1) can be adapted to this case as well. In particular,
one obtains bounds on the soundness error by considering the surface E × E and using results
[2, 5] on the number of rational points of projective varieties in terms of their degree. This would
correspond to the Schwartz-Zippel Lemma in this more general context.

6 An Implicit Assumption and a Potential Vulnerability

Our aim is to obtain an argument for

n1 · P1 + · · ·+ nk · Pk = ∞. (7)
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6 AN IMPLICIT ASSUMPTION AND A POTENTIAL VULNERABILITY

Note that here the coefficients (multiplicities) ni are integers. The above process reduces this to
a claim about

k∑
i=1

ni

z − z(Pi)
, (8)

namely that it is equal to
δz
(
NE/Fq(z)(D(x, y))

)
,

see Equation (1). Note that in the original Equation (7) the ni were integers, whereas in ex-
pression (8) they are elements of the finite field Fp. Hence there is a loss of information. This
is caused by the use of logarithmic derivatives, which turns integer exponents into coefficients in
the finite field. Hence we have to be cautious.

Above we have assumed that both sides of Equation (1) have degree smaller than p. We used
the fact that the logarithmic derivative is a homomorphism from F× to F to conclude that if the
logarithmic derivatives of both sides agree, then they differ by at most a nonzero multiplicative
constant. This was sufficient for us, as multiplying a function by a nonzero constant does not
change its divisor. If the condition about the degrees does not hold, the two sides might differ
by t = up, the p-th power of a non-constant element u ∈ F , but still have equal logarithmic
derivatives.

The left hand side of Equation (1) is a polynomial, and in the argument the prover commits
to its coefficients. Hence the degree is under control and cannot be very large. As p is classically
very large, committing to the coefficients of this polynomial would even not be possible if its
degree would be larger than p.

The right hand side however consists of k points with multiplicities n1, . . . , nk. In the protocol
the points are fixed (either their are public or they are committed to), hence multiplication by
a p-th power will necessarily correspond only to changing the multiplicities in a restricted way:
suppose

k∏
i=1

(z − z(Pi))
ni =

k∏
i=1

(z − z(Pi))
mi · up.

Here we can assume with high probability that the z(Pi) are distinct. Then we have

ni ≡ mi (mod p), for i = 1, . . . , k.

So a proof that
n1 · P1 + · · ·+ nk · Pk = ∞

will necessarily also provide an argument that

m1 · P1 + · · ·+mk · Pk = ∞,

as the logarithmic derivatives of the expression on the right hand side of Equation (1) agree in
this case. This is the only ambiguity that can arise.

Hence we implicitly make the assumption that 0 ≤ ni < p for i = 1, . . . , k. No additional
constraints need to be added, but the user of the argument for sums of points has to be aware of
this implicit assumption, which is easy to miss in applications. A particular danger is to use the
argument to prove that a divisor with negative coefficients sums to zero. Given a valid proof for∑

ni · Pi = ∞ with 0 ≤ ni < p, a malicious prover can replace some of the coefficients ni by the
corresponding negative numbers −(p− ni) (congruent modulo p to ni) and obtain an argument
which the verifier will accept.
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